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1. Introduction

The commercial mortgage backed securities (CMBS) market can be characterized by the complexity of the risks underly-

ing the commercial real estate loan (CREL) collateral that secures bond cashflows. At the core of the endeavor of modelling

such risks is the so-called ‘default-trigger’, the threshold at which under simulated conditions a loan’s promised cashflows

will be perturbed and reflect pay-off timing and amounts that differ from the originally promised schedule. 

The purpose of this paper is to build intuition on the probability of default and expected loss values, determined at the

loan and trust levels, using a reduced form approach for a large sample of 25,019 CRELs spanning the period November

2007 through January 2015. As the data in CMBS is non-public, and as the CMBS market does not utilize derivatives pricing

technology as discussed in Christopoulos et al. (2014) , the findings in this short paper are rare in the academic literature. 

The remainder of the paper is organized as follows. In Section 2 we provide discussion of the data. In Section 3 we dis-

cuss the credit risk implications while in Section 4 we provide the results. We conclude in Section 5 and in the Appendix we

provide a synopsis of key elements of Christopoulos and Jarrow (2016) which this analysis and simulation output is based

upon. 
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Table 1 

Summary of CMBX and Underlying Loans: This table summarizes the number of loans by property type across different CMBX series evaluated in this 

study and the total loan balance (in $ billions). 

CMBX Ser 1 CMBX Ser 2 CMBX Ser 3 CMBX Ser 4 CMBX Ser 5 CMBX Ser 6 CMBX Ser 7 CMBX Ser 8 CMBX Ser 1:8 

Industrial 547 529 613 581 447 200 189 249 3355 

Lodging 256 401 437 446 283 238 225 230 2516 

Multifamily 701 387 378 347 162 251 482 496 3204 

Office 834 809 933 974 634 269 192 290 4935 

Other 107 158 228 248 205 85 88 99 1218 

Retail 1559 1606 1833 1822 1414 544 491 522 9791 

Total (#) 4004 3890 4422 4418 3145 1587 1667 1886 25,019 

Total ($ billions) $57.8 $55.1 $71.9 $72.2 $49.9 $29.9 $27.5 $25.1 $389.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Data 

The costly non-public data on loans and bonds was donated by an institutional investor with ˜$0.50 trillion assets under

management (AUM) for the purposes of this study. The CRELs span origination dates 2001 through 2015. The data vendor

is Intex and the frequency of the CREL data is monthly. Loan level characteristics such as property type, location, loan

coupon, and size are included as are, importantly, the updated payment statuses of the loans which may be characterized

as current, delinquent, or default. With a principal balance of $389 billion, our sample represents approximately 1/3 of the

entire CMBS universe outstanding and nearly all of the actively traded CMBS collateral. Table 1 provides a summary of the

loans included in our study. Additional non-public data provided by the institutional investor included property x regional

indices published by the National Council of Real Estate Investment Fiduciaries (NCREIF). Public data on interest rates was

secured from the Federal Reserve’s H.15. Selected Interest Rates website 1 and public data on real estate investment trusts

(REITs) was provided through the various stock exchanges on which they are listed. 

3. Credit risk implications 

Christopoulos and Jarrow (2016) capture the likelihood of transition from a delinquent payment state to a default pay-

ment state, λf , as described in the Appendix in Eq. (5) as a default intensity under the probability measure Q . Default may

only be arrived at from a state of delinquency, over the discrete time interval [ t, t + �] . We implement their reduced form

model on a daily basis over the period November 2007 through January 2015 for the purpose of capturing the expected loss

profile for all loans in our sample for this study. 2 

We utilize a static loss severity assumption by property type as observed in the Intex data. The loss severities we use,

which vary by property type, are: Multifamily (36%); Retail (47%); Office (37%); Hotel (48%); Industrial (38%); and Other

(50%). 3 We assume three months to disposition for all loans that transition to default. The static choices are consistent with

Driessen and Van Hemert (2012) , The Bank for International Settlements (2008) , Peaslee and Nirenberg (2001) , and other

studies. 

The prospects for losses under simulation using default intensities should tend to be downward sloping as the remaining

time to maturity for loans diminishes, all else being equal. For the default intensity, λf , the expected remaining lifetime

default rate, E [ Def i, t ], for the i th loan at any time t with loan maturity date T is given by 

E [ De f i,t ] = 

∫ T 

t 

λ f (t) dt (1)

The implication of a downward slope observed in the empirical results (which we discuss below) should follow because

∫ T 

0 

λ f (t) dt > 

∫ T 

t 1 

λ f (t) dt > · · · > 

∫ T 

T −�t 

λ f (t) dt (2)

As loans age and maturity draws closer, the number of months simulated at any simulation time declines. Specifically, as the

interval [ t , T ] becomes smaller there are, generally, less and less possibilities for the diffusions of the economy that interact

with loan characteristics in the default intensity, λf , to generate defaults. 

To confirm this perspective we apply the static property-type specific loss severity assumptions, L i, k , to each of the i

loans of the k th property type at each default time in the simulation such that the expected loss for the i th loan at any

time t with loan maturity date T is given by 

E [ Loss i,t ] = L i,k × E [ De f i,t ] (3)
1 https://www.federalreserve.gov/releases/h15/data.htm 

2 Key aspects of that study are provided in the Appendix to this study. 
3 These compare well with Moody’s historical loss severities for CRELs across all vintages of Multifamily (35%); Retail (49%); Office (40%); Hotel (46%); 

and Industrial (39%) as reported in Banhazl and Halpern (2015) and also correspond to similar values reported by Wells Fargo (see, Frerich and van Heerden, 

2015 ). 

https://www.federalreserve.gov/releases/h15/data.htm
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Fig. 1. Expected loss, CMBX Series 1 through 7: This chart shows the simulated aggregated expected loss for CMBX Series 1 through 7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As there are many loans underlying any given CMBS transaction, we construct an aggregate loss measure across all loans in

a CMBS trust defining the expected loss for the j th CMBS trust collateralized by N loans 4 as 

E 
[
Loss j,t 

]
= 

∑ N
i =1 c i,t E [ Loss i,t ] ∑ N 

i =1 c i,t 
(4) 

with c i, t the outstanding principal balance on the i th loan at time t . 

4. Results

We conducted daily simulations for all N = 25 , 019 CRELs underlying J = 7 CMBX Series 1–7 in the sample and allocated

their cashflows to their seven respective CMBX trusts. 5 We aggregated the expected loss at the trust level as described in

Eq. (4) for 1912 daily simulation dates from November 2007 through January 2015. 

What we observe are seven time series in Fig. 1 which capture the expected losses for each CMBX series. The differen-

tiation amongst the time series reflects the specific loan collateral attributes and actual payment status transitions which

interact to inform the default intensity, λf . Categorically, however, the aggregated expected loss for each of the CMBX series

declines as the underlying loans age, which is consistent with Eqs. (1) and ( 2 ). 

Next, we capture the age of each loan on each simulation date and determine the weighted average loan age for each

CMBX series in keeping with the industry practice of ‘aging’ loss severity data. Fig. 2 exhibits somewhat higher values

than exhibited in actual cumulative losses found in the industry literature for CMBS (see, Frerich and van Heerden, 2015 ).

Additionally, the differentiation amongst the series corresponds well with the actual loss severity experience by vintage

reported by Moody’s (see, Banhazl and Halpern, 2015 ). From our perspective, we simply note that the expected loss risk

measures captured in our analysis are running lifetime estimates. Given the fact that many loans have substantial remaining

time to maturity, and given considerable volatility in the CMBS market, it is possible that we may see greater convergence

between our expected loss values and the actual loss experience for CRELs over time. 

Anecdotal support for this perspective is found in the mapping between special serviced loan experiences for the 2007

vintage (see Barclays, 2015 ) with our expected losses for CMBX 5, which is made up almost exclusively with 2007 origination

year loans. In Fig. 3 we see a very close mapping between the simulated expected loss and the actual special servicing
4 We use subordination levels provided by vintage as discussed in Stanton and Wallace (2012) . For further details on the loan to bond cashflow allocation

procedure see Christopoulos and Jarrow (2016) .
5 CMBX 8 is excluded from this study since it was issued in January 2015.
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Fig. 2. Cumulative expected loss by loan age, CMBX Series 1 through 7: This chart shows the aggregated aged cumulative expected loss for CMBX Series 1 

through 7. 

Fig. 3. Special Servicing 2007 vintage compared with CMBX Series 5: This chart shows the simulated expected loss for CMBX Series 5 (grey), the history 

of specially serviced loans for the 2007 vintage, and the expected losses for CMBX Series 5, 63 months forward (gold). 

 
relationship for the 2007 vintage, 63 months forward, indicating a pleasantly coincidental 5-year forecast of losses by our

model that appears to have been borne out for this vintage. 6 
6 These results should not be surprising considering the highly similar results between the hazard rate estimates of Christopoulos and Jarrow (2016) and 

Christopoulos et al. (2008) and similarities in simulation approach. 
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Fig. 4. Actual/historical state transition compared with simulated expected loss for one loan in CMBX Series 2: This chart shows the historical payment

status for one loan compared with the simulated expected loss for the same loan.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While we establish that the simulation is performing in line with intuition as the interval [ t , T ] → 0, this fact must

be juxtaposed with the possibility of increased likelihood of default associated with the age variable in the delinquent to

default transition. Age statistically has a positive and significant relationship with delinquency to default transition at the

10% level (see Christopoulos and Jarrow, 2016 ). This makes sense as no loans default at origination, and yet many loans

may default over time up through balloon maturity as they age. Nevertheless, this finding conflicts with compression of the

interval related to loan maturity. 

To reconcile this, in Fig. 4 we show one example of a single loan in CMBX Series 2. As the loan’s actual payment status

changes in the monthly reported data, such changes inform the default intensity, λf , which, in turn, influences the simulated

expected loss. We see in the plot, for a single loan in CMBX Series 2, the simulated expected loss (line) compared with the

actual payment status (bars) over the period May 2012 through August 2012, on a daily basis. The loan’s payment status in

the data begins in the first two months at 30–59 days delinquent (yellow bar) as measured on the primary (left) Y-axis. In

third month, the loan payment status deteriorates to 60–89 days delinquent (red bar). In the fourth month the loan payment

status deteriorates further to 90+ days delinquent (magenta bar). On the secondary (right) Y-axis we measure the simulated

expected loss value for this loan (line) and see that it increases in the 12 weeks of daily simulation as the loan ages even

while there is a truncation of possibilities in the simulation itself as the loan moves closer to its maturity date, T . 

5. Summary

This analysis provides insights into the way in which the three-part influences of i.) age (statistically), ii.) compression of

the loan life interval [ t , T ] in the simulation, and iii.) sensitivity to a changing actual information set related to the payment

status of the loan, jointly interact to create a robust estimate of default and loss in the reduced form. Our approach correctly

captures muted temporal variability implied by Eq. (2) while also considering particular variability at the loan level corre-

sponding to new information and statistical influences impartially considered in the default intensity, λf . The compression

in uncertainty in the simulation as the loan moves closer to its maturity date, is weighed against the other factors of age

and change in information contained in updated data. Our analysis highlights how these seemingly conflicting aspects of

loan risk are well resolved in the reduced form model of Christopoulos and Jarrow (2016) and provides further support for

the use of the reduced form approach in the evaluation of CMBS default and loss risks. 
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Appendix 

In this Appendix we provide a short synopsis of key elements in Christopoulos and Jarrow (2016) pertinent to this paper.

Reduced form default model 

In the case of the reduced form approach introduced by Jarrow and Turnbull (1992, 1995) and applied to CMBS by

Christopoulos et al. (2008) , the default trigger takes the form of default intensities. These intensities are used in the simu-

lation in the Cox process as described in Lando (1998) to form the threshold for default in the simulation. 

The reduced form model of Christopoulos and Jarrow (2016) is a credit-only model which abstracts from prepayment and

liquidity risk. It models interest rate risk using a multi-factor Heath, Jarrow and Morton 

7 term structure model. Credit risk

is captured using a reduced-form approach first introduced by Jarrow and Turnbull (1992) and Jarrow and Turnbull (1995) .

The economy is simulated 

8 using the Cholesky decomposition method (see Glasserman, 2003 ) to capture seventy-three

correlated random variables in Monte Carlo simulation. 

The statistically determined transition intensities articulate payment state transitions of current to delinquent (CD), delin-

quent to current (DC) and delinquent to default (DF), so g ∈ {( C → D ), ( D → C ), ( D → F )}. The transition intensity process for

evaluation of credit risk corresponds with the regulatory requirements of the Federal Reserve Board under CCAR. 9 

We are given a filtered probability space (�, F , (F t ) t∈ [0 , T ) , P ) satisfying the usual conditions 10 with P the statistical

probability measure. The trading interval is [0, T ]. Traded are default free bonds of all maturities T ∈ [0, T ] with time t

prices denoted p ( t, T ), and various property indices, REITs, CRELs, CMBS bonds, and CMBX indices. The default-free spot rate

of interest at time t is denoted r t . Let ( X t ) t ∈ [0, T ]) represent a vector of state variables, adapted to the filtration, describing

the relevant economic state of the economy. For example, the spot rate of interest could be included in this set of state

variables. We assume that markets are complete and arbitrage free so that there exists a unique equivalent martingale

probability measure Q under which discounted prices are martingales. The discount factor at time t is e −
∫ t 

0 r s ds . Because we

are interested in valuing CMBS, most of the model formulation will be under the probability measure Q . 

The intensity estimates are determined from a multinomial logistic regression for hazard rate transitions utilizing

1,921,007 historical loan life transition observations from the Intex database of all loans underlying CMBX 1–8 between

November 2007 and June 2015. Default is thus modelled as an intensity process. Each commercial loan i has a current,

delinquent, and default intensity process that depends upon its payment status N t , the state variable vector X t , a vector of

loan specific characteristics U 

i that are deterministic (non-random), e.g. the net operating income of the underlying property

at the loan origination, and time dependent loan characteristics V i t , e.g. the age of the loan. 

The current, delinquent, and default intensity processes for each loan have the same functional form, differing only in

the loan specific variables used. Default may only be arrived at from a state of delinquency, over the discrete time interval

[ t, t + �] and we then define the default intensity as 

λ f (t, U 

i , X t , V 

i 
t , N t )� = 1 / (1 + e −(ϕ f + φ f U 

i + ψ f X t + ξ f V 
i 

t ) ) , (5)

where ϕ c , φc , ψ c , ξ c , ϕ d , φd , ψ d , ξ d , ϕ f , φf , ψ f , ξ f are vectors of constants, and λ f (t, U 

i , X t , V 
i 

t , N t )� is the probability of

jumping to default from delinquent. 

Estimation of these intensities is under the statistical measure and given the assumption that delinquency and default

risk are conditionally diversifiable, as discussed in Jarrow (2001) and Jarrow et al. (2005) , these intensity functions will

be equivalent under both the empirical and martingale measures. We then estimate these intensities using a multinomial

logistic regression of the form 

F g (v ) = 

1 

(1 + e −(β0 + 
∑ m 

i =1 βi v i ) ) 
(6)

where F g ( v ) represents the probability of a transition event for each of the three transition categories g ∈ {( C → D ), ( D →
C ), ( D → F )}, β is a constant vector, and v is the vector of independent variables. 

Christopoulos and Jarrow (2016) validate the predictive ability of the model default probabilities using the standard tech-

niques 11 in the credit ratings literature of: i.) the Receiver operating characteristic area under the curve (ROC AUC) and ii.)

the Brier score. Briefly a ROC AUC value of 0.50 for the ROC AUC indicates a random model with no predictive ability, while

a value of 1.00 indicates perfect forecasting. The Brier score is the average mean square error of a predictor with a binary
7 See Heath et al. (1992) .
8 A technical specification of the simulation procedure used to determine these thresholds can be provided upon request.
9 See Appendix B of Board of Governors of The Federal Reserve System (2015) .

10 See Protter (1990) .
11 See Medema et al. (2009) , and others.
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event B = 

1 
N 

∑ N 
i

(
ˆ p i − Y i 

2
where ˆ p i is the estimated probability of an event. It holds that lower Brier scores indicate bet-

ter predictive power of the model. They report a ROC AUC of 0.76 and a Brier score of 0.05 which is in keeping with the

literature. 12 
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